Grinding wheels vary enormously in design according to the purpose for which the wheel is to be used. Apart from the variety of abrasives already mentioned, there is the variety of bonds employed including plastic, resinoid, vitrified, metal bonds, and plated wheels.
There is scope for engineering bond properties to achieve strength and wear behavior suited to the particular abrasive within each class of bond. The bond must hold the abrasive until wear makes the abrasive too inefficient as a cutting tool. In addition, the porosity of the wheel must be sufficient for fluid transport and chip clearance. However, porosity affects grit-retention strength and so the wheel must be correctly engineered for the workpiece material and the removal-rate regime.
A grinding wheel is bonded and engineered according to the particular process requirement. A general-purpose wheel will give greatly inferior removal rates and economics compared to an optimized wheel for the particular product. This may be relatively unimportant in a toolroom dealing with various tools of similar material. However, wheel selection and optimization become critical for large-scale repeated batches of aerospace and automotive parts. In such cases, the process engineer should adopt a systematic approach to problem-solving and work closely with the grinding wheel and machine tool manufacturers.
Few readers have time and fortitude to read a handbook from beginning to end. Although much could be learned from such an approach, readers are encouraged to cherry-pick their way through the most appropriate chapters. Readers are mostly busy people who want to solve a problem. The handbook is therefore structured to allow individual areas of interest to be pursued without necessarily reading chapters consecutively.
1.6.1 Part I
The 12 chapters in Part I cover the principles of grinding. This part includes all aspects that relate to grinding generally. Topics include basic grinding parameters, grinding wheels and grinding wheel structure, and wheel-dressing processes used for preparing wheels for grinding and used for restoring grinding efficiency. Further chapters include vibrations, wheel-wear mechanisms, coolants, process monitoring, and grinding costs. Principles are explained as directly as possible and references are given to further sources of information. For example, some readers may wish to explore the science and tribology of grinding more deeply [Marinescu et al. 2004]. Tribology is the science of friction, lubrication, and wear [DES (Jost) Report 1966]. The tribology of abrasive machining processes brings together the branches of science at the core of grinding and grinding wheel behavior.
The 8 chapters in Part II explore applications of grinding. Part II covers grinding of conventional ductile materials, grinding of brittle-hard materials, grinding machine technology and rotary dressers, surface grinding, external cylindrical grinding, internal cylindrical grinding, centerless grinding, and ultrasonically assisted grinding. A particular emphasis is placed on developments in technology that can lead to improved part quality, higher productivity, and lower costs.
The authors draw on industrial and research experience, and give numerous references to scientific publications and trade brochures where appropriate. Readers will find the references to the various manufacturers of machine tools, auxiliary equipment, and abrasives a useful starting point for sourcing suppliers. The references to scientific publications provide an indication of the wide scope of research and development in this field around the world.
Alden, G. I. 1914. “Operation of Grinding Wheels in Machine Grinding.” Trans. Am. Soc. Mech. Eng. 36, 451-460.
CIRP (International Institution for Production Engineering). 2005. Dictionary of Production Engineering II—Material Removal Processes, Springer, New York.
De Beers Industrial Diamond Division, 1983. “Abrasive Boron Nitride—The Family of Choice,” Cooley, B. A. and Juchem, H. O., Diamond and CBN Grit Products, De Beers, UK.
DES (Jost) Report. 1966. “Lubrication (Tribology) Education and Research.” Her Majesty’s Stationery Office, London.
Guest, J. J. 1915. Grinding Machinery. Edward Arnold, London.
Marinescu, I. D., Rowe, W. B., Dimitrov, B., and Inasaki, I. 2004. Tribology of Abrasive Machining Processes. William Andrew Publishing, Norwich, NY.
Rowe, W. B., Li, Y., Inasaki, I., and Malkin, S. 1994. “Applications of Artificial Intelligence in Grinding.” Ann. Int. Inst. Prod. Eng. Res. Keynote Paper 43, 2, 521-532.
Rowe, W. B., Statham, C., Liverton, J., and Moruzzi, J. 1999. “An Open CNC Interface for Grinding Machines.” Int. J. Manuf. Sci. Tech. 1, 1, 17-23.
Woodbury, R. S. 1959. History of the Grinding Machine. The Technology Press, MIT, Cambridge, MA.