Handbook of Machining with Grinding Wheels

Grinding, once considered primarily a finishing operation involving low rates of removal, has evolved as a major competitor to cutting, as the term “abrasive machining” suggests. This is what Milton Shaw, the man who is considered the great pioneer and father of American grinding, said about 10 years ago. Shaw led the development of grinding in the United States over the last 50 years.

We named this book Handbook of Machining with Grinding Wheels because the borders between grinding and other operations such as superfinishing, lapping, polishing, and flat honing are no longer distinct. Machining with grinding wheels extends from high-removal rate processes into the domains of ultra-high accuracy and superfinishing. This book aims to explore some of the new “transition operations,” and for this reason we chose this title.

This book presents a wide range of abrasive machining technology in fundamental and appli­cation terms. The emphasis is on why things happen as they do, rather than a how-to-do-it approach. The topics covered in this book cover a range of abrasive machining processes with grinding wheels, making this probably the most complete book regarding all kinds of grinding operations.

The aim of this book is to present a unified approach to machining with grinding wheels that will be useful in solving new grinding problems of the future. It should be of value to engineers and technicians involved in solving problems in industry and to those doing research on machining with grinding wheels in universities and research organizations.

The team of authors are famous researchers who have devoted their entire lives doing research in this field and who are still actively contributing to new research and development. The authors represent a large region of the world where abrasive machining with grinding wheels are most advanced: United States, Great Britain, Japan, and Germany. I thank my co-authors for taking time from their busy activities to write and review this book over a period of 2 years.

All the co-authors are my long-time friends, and with some of them, I have previously published or we are still in the process of finishing other books. Here is a short presentation of them.

Professor Brian Rowe is considered the world father of Centerless Grinding in addition to other notable research concerning grinding aspects: thermal and dynamic aspects, fluid-film bearings, etc. He established a great laboratory and school in manufacturing processes at Liverpool John Moores University. As an emeritus professor, Brian is busier than before retirement. As he is a native English speaker, he spent a lot of time polishing our English in order to have a unitary book. I thank him for similar great work on our previous book, Tribology of Abrasive Machining Processes.

Professor Ichiro Inasaki is the leading figure in Grinding in Japan. As dean of the Graduate School of Science and Technology at Keio University, he developed a great laboratory with outstanding research activities. His “intelligent grinding wheel” is featured in the Noritake Museum and represents one of his best accomplishments and contributions. He led the International Insti­tution for Production Engineering Research in 2004/2005 as the president and was granted several awards including an SME award. Ichiro-san and I have written two books: Handbook of Ceramic Grinding and Polishing, and Tribology of Abrasive Machining Processes.

Professor Eckart Uhlmann is professor and director of the Institute for Machine-Tools and Management at Technical University of Berlin. Dr. Uhlmann received this chaired professorship after a very successful industrial career with Hermes Abrasive in Germany. His main research is on one of these transition processes: grinding with lapping kinematics. As the head of his institute, one of the largest in Germany, he holds the leading position in research on all aspects of abrasive machining with grinding wheels. A future book with Dr. Uhlmann will be also published this year, Handbook of Lapping and Polishing/CMP.

Dr. Mike Hitchiner is manager of Precision Technology at Saint-Gobain Abrasives, the largest grinding wheel company in the world. Mike has devoted all his life to research, development, and practical application of grinding processes. He started this activity during his Ph. D. studies at the University of Oxford in England, and today he is considered “Mr. CBN Grinding” by the precision­grinding industry. He has brought an important industrial perspective to this book, as well as hundreds of applications.

As the leading author, my own experience in abrasive-machining research complements and widely extends the experience of the other authors across industrial and fundamental areas of investigation. My researches have particularly focused on new and challenging techniques of abrasive machining particularly for new materials. I have been fortunate to have studied the latest technologies developed in countries across the world firsthand and contributed to developing new techniques for application in industry and in research.

The main purpose of this book is to present abrasive-machining processes as a science more than an art. Research and development on abrasive-machining processes have greatly increased the level of science compared to 25 years ago when many aspects of abrasive machining processes still depended largely on the expertise of individual technicians, engineers, and scientists.

The book has two parts: “The Basic Process of Grinding” and “Application of Grinding Processes.” This structure allows us to present more about understanding of grinding behavior in the first part and more about industrial application in the second part.

loan D. Marinescu

Toledo, 2006

loan D. Marinescu is a professor of mechanical, industrial, and manufacturing engineering at the University of Toledo. He is also the director of the Precision Micro-Machining Center of the College of Engineering (www. eng. utoledo. edu/pmmc) of the same university. He has a Ph. D. in manufac­turing processes, an honorary doctorate from University of Iashi, Romania, and is a member of numerous international professional organizations: JSPE, SME, ASME, ASPE, CIRP, IDA, ASAT, and NAMRI.

Professor Marinescu is author of more than 15 books and over 300 technical and scientific papers. He has given lectures and workshops in more than 40 countries around the world. Also, he is the executive director and cofounder of the American Society for Abrasive Technology.

Ten years ago, Dr. Marinescu founded his own company, Advanced Manufacturing Solutions Co., LLC, a company that specializes in consulting, R&D, manufacturing, and trade (www. inter — ams. com). He is the president and CEO of this company.

Mike Hitchiner obtained his doctorate in 1982 at the University of Oxford for research in grinding and machining with cubic boron nitride (CBN) and diamonds. After a another 3 years of university research in diamonds and CBN, he joined Saint-Gobain Abrasives (SGA) and its affiliate companies in 1985. He worked initially on conventional abrasive grain manufacture and advanced ceramics before becoming R&D manager for vitrified CBN in Europe in 1987. In 1989, he joined Universal Superabrasives (SGA) as technology manager for vitrified CBN for the U. S. market. More recently, he has broadened his responsibilities as the technology manager for precision grinding applications for North America, as well as projects throughout Asia and Europe.

Eckart Uhlmann is the director of the Fraunhofer-Institute for Production Systems and Design Technology IPK and professor of machine tools and manufacturing technology at the Institute for Machine Tools and Factory Management of the Technical University in Berlin, Germany. He received his doctorate in engineering on “Creep Feed Grinding of High-Strength Ceramic Materials.” Prior to his academic career, he served several years as vice-president and director of research and development at Hermes Schleifmittel GmbH & Co., Hamburg, Germany. In addition to being a consultant for various German and international companies, Dr. Uhlmann holds many professional memberships, including the Berlin Wissenschaftskommission, the Verein Deutscher Ingenieure, and the International Institution for Production Engineering Research. He also holds an honorary doctorate from Kolej Universiti Teknikal Kebangsaan, Malaysia.

W. Brian Rowe gained 6 years of experience with Austin Motor Company, Birmingham, England, and another 6 years with Wickman Machine Tools, Coventry, England. He studied at the University of Aston in Birmingham earning an honors degree in mechanical and production engineering in 1961. He earned a Ph. D. for research on the mechanics of centerless grinding at Manchester University in 1964 and became a doctor of science in 1976 for his wider research on tribology. He became the head of mechanical engineering in 1973 at Liverpool Polytechnic (later to become Liverpool John Moores University) and eventually became assistant rector responsible for corporate academic development, strategic planning, and for development of research. In 1992, he relin­quished his administrative responsibilities in order to focus on research. As director of the Advanced Manufacturing Technology Research Laboratory (AMTREL), he built up a significant team of researchers that worked closely with industry in the United Kingdom. AMTREL has made contributions across a wide spectrum of machine tool technologies particularly in relation to grinding and grinding-machine design. He has supervised more than 40 Ph. D.s who have gone on to influence manufacturing developments around the world. He thanks them for their contributions in making his career highly rewarding. He has jointly published with them more than 250 scientific papers, patents, and books including Design of Hydrostatic and Hybrid Bearings in 1982 and Tribology of Abrasive Machining Processes in 2004.

Ichiro Inasaki, Dean of the Faculty of Science and Technology, Keio University, has been dedicated to research work in manufacturing engineering and machine tool technologies. He completed his doctorates at Keio University in 1969 and honorary Dr.-Ing. at Hanover University, Germany, in 1999. He serves as fellow of the Japan Society of Mechanical Engineers, the Japan Society of Precision Engineering, and the Society of Manufacturing Engineers, and served as president for CIRP between 2004 and 2005. As a positive part of his career, he has undertaken a role as editor of international journals including the International Journal for Manufacturing Science and Pro­duction, Machining Science and Technology, International Journal of Production Engineering and Computers, Journal of Engineering Manufacture (IMechE), and Journal of Nanotechnology and Precision Engineering for years to date.

His achievements and contributions to the world manufacturing engineering industries deserve appreciation and recognition, and awards were conferred on him by the Japan Society of Mechanical Engineers in 1969, 1987, 1997, and 1999, the Japan Society for Precision Engineering in 1992 and 2005, the Japan Society for Abrasive Technology in 1980 and 1998, the Japanese Society of Tribologists in 2003, and the Society of Manufacturing Engineers (F. W. Taylor Research Medal) in 2005. His dedicated efforts have been condensed in books, publications in journals, and more than 300 papers in the field of manufacturing engineering.

1.1 FROM CRAFT TO SCIENCE

Grinding has been employed in manufacturing for more than 100 years, although the earliest practice can be traced back to neolithic times [Woodbury 1959]. The lack of machine tool technology meant that primitive operations were mostly limited to simple hand-held operations. An early device for dressing a sandstone grinding wheel was patented by Altzschner in 1860 [Woodbury 1959].

The 20th century saw the burgeoning of grinding as a modern process. Seminal publications by Alden and Guest started the process of bringing the art of grinding into a scientific basis [Alden 1914, Guest 1915].

Grinding is a machining process that employs an abrasive grinding wheel rotating at high speed to remove material from a softer material. In modern industry, grinding technology is highly developed according to particular product and process requirements. Modern machine tools may be inexpensive machines with a simple reciprocating table, or they may be expensive machines. Many grinding machines combine computer-controlled feed-drives and slide-way motions, allowing complex shapes to be manufactured free from manual intervention. Modern systems will usually incorporate algorithms to compensate for wheel and dressing tool wear processes. Programmable controls may also allow fast push-button set-up. Monitoring sensors and intelligent control introduce the potential for a degree of self-optimization [Rowe et al. 1994, 1999].

Faster grinding wheel speeds and improved grinding wheel technology have allowed greatly increased removal rates. Grinding wheel speeds have increased by two to ten times over the last century. Removal rates have increased by a similar factor and in some cases by even more. Removal rates of 30 mm3/mm/s were considered fast 50 years ago, whereas today, specific removal rates of 300 mm3/mm/s are increasingly reported for easy-to-grind materials. In some cases, removal rates exceed 1,000 mm3/ mm/s. Depths of cut have increased by up to 1,000 times values possible 50 years ago. This was achieved through the introduction of creep-feed and high-efficiency deep grinding technology.

Advances in productivity have relied on increasing sophistication in the application of abrasives. The range of abrasives employed in grinding wheels has increased with the introduction of new ceramic abrasives based on sol gel technology, the development of superabrasive cubic boron nitride (CBN), and diamond abrasives based on natural and synthetic diamond.

New grinding fluids and methods of delivering grinding fluid have also been an essential part in achieving higher removal rates while maintaining quality. Developments include high-velocity jets, shoe nozzles, factory-centralized delivery systems, neat mineral oils, synthetic oils, vegetable ester oils, and new additives. Minimum quantity lubrication provides an alternative to flood and jet delivery aimed at environment-friendly manufacturing.

Grinding is not a process without its share of problems. Problems experienced may include thermal damage, rough surfaces, vibrations, chatter, wheel glazing, and rapid wheel wear. Over­coming these problems quickly and efficiently is helped by a correct understanding of the interplay of factors in grinding. Commonly encountered problems are analyzed in succeeding chapters to show how parameters can be optimized and grinding quality improved.

Grinding dynamics and the sources of vibration problems are explained and different approaches to avoiding vibrations are explored. Some of the techniques described may be surprising to some practitioners. For example, it is shown that increased flexibility of the grinding wheel can be an advantage for vibration suppression.

Attitudes to costs have changed over the years. Buying the cheapest grinding wheels has given way to evaluation of system costs including labor, equipment, and nonproductive time. Examples are included in Chapters 12 and 19 to show how systematic analysis can greatly increase productivity and quality while reducing cost per part. Often the key to reducing costs is to reduce nonproductive time.

Updated: 24.03.2016 — 12:02